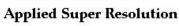
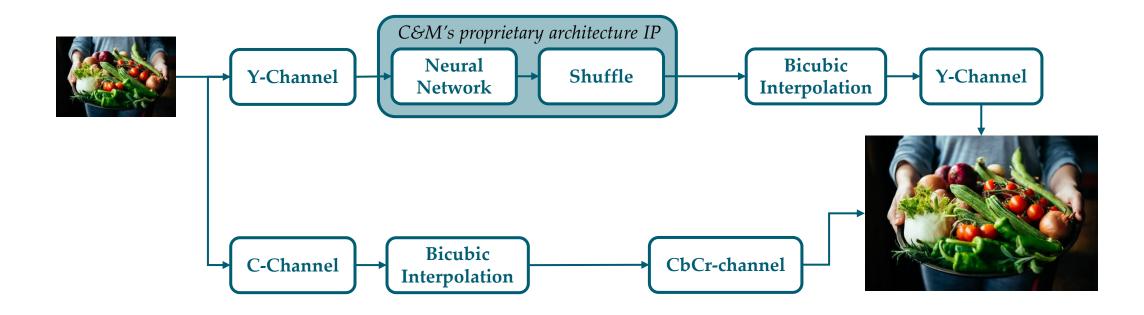


Super Resolution

IP LINE-UP: CV (Super Resolution)


Upscaling and improving details within the video based on a **deep learning-based neural network super resolution HW IP, c.WAVE120**

Look at the hair band, patterns differ from original image, but it's on nearly the same level.


Original image (high-quality version)

<Steps of applying deep learning-based Super Resolution>

- 1) Basis of the massive set of training datasets
- 2) Extracts the feature points of an image or video
- 3) Splits them pixel by pixel
- 4) Applies the appropriate colors to fill in the missing parts of the data
- 5) Stitches them
- 6) Reproduces in sharper highresolution image or video.

IP LINE-UP: CV (Super Resolution)

Super Resolution IP (as Upscaling) : c.WAVE120

- 8K60fps @550MHz
- Supported scaling ratio
 - $X2.0 \sim x8.0$ with x0.1 step
- Support On-the-fly and mem-to-mem mode
- # of parameters: 4K in Scale 2, 12K in Scale 4
- Normalized quantization for Weight/Feature map

- Convolutional Neural Network for Y-Channel
 - Features Extraction
 - Constructing HR Image
- No bandwidth required in On-the-fly mode
- Cost-effective high-quality IP

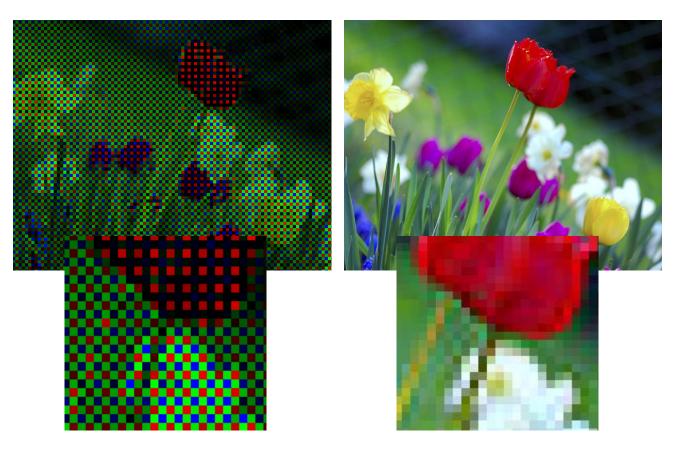


Image Signal Processing

IP LINE-UP: ISP (Image Signal Processing)

Image Signal Processing (ISP), a signal processing, is equipped with an end-to-end full-featured ISP IP that converts the sensor's signal into a more visible and processable format, enabling the more clear vision of the image.

Converts the data received from the camera sensor as if it were seen by the human's eye:

- Color Enhancement
- Noise Reduction
- Sharpness, etc.

IP LINE-UP: CP (Computational Photography)

Computational Photography (CP) improves the captured image by applying computational imaging techniques, enabling the more clear vision of the image.

<WITHOUT HDR>

<WITH HDR>

Enhances the quality of images taken in a strong or poor lighting environments

- HDR (High Dynamic Range)
- 3DNR (3D Noise Reduction)

IP LINE-UP: CP (Computational Photography)

KERBEROS – Lens Distortion Correction (with a wide angle) Example

<Original Image> <Corrected Image>

IP LINE-UP: CP & ISP

Expanded Product Map based on Data Flow

Channel Support RGGB RCCB <Under dev.> **RGB-IR** <Under dev.>

	IP Name	Description	Exposure	MP	FPS	Base	Status (R: RTL ready, C: C-model Ready, D: Demonstration Board Ready)
Pre- Processing	NIX	Multi-Exposure HDR (WDR)	2	N/A	N/A		RCD
	STYX		3	N/A	N/A		С
ISP Processing	CARPO	Image Signal Processing	N/A	<2MP	30fps		RCD
	LEDA		N/A	<8MP	30fps		RCD
	METIS		N/A	<13MP	60fps		RCD
Post Processing	HYDRA	3D Noise Reduction	N/A	<8MP	30fps	MA (Motion Adaptive)	RCD
	CHARON	3D Noise Reduction	N/A	<8MP	30fps	ME (Motion Estimation)	RCD
	KERBEROS	Lens Distortion Correction	N/A	<5MP	30fps	FOV 180 degree	RCD

^{*} Based on the selected foundry, the fps and MP's output may differ based on the foundry's process.

R: RTL Ready C: C-model Ready

D: Demonstration Board Ready

Object Detection

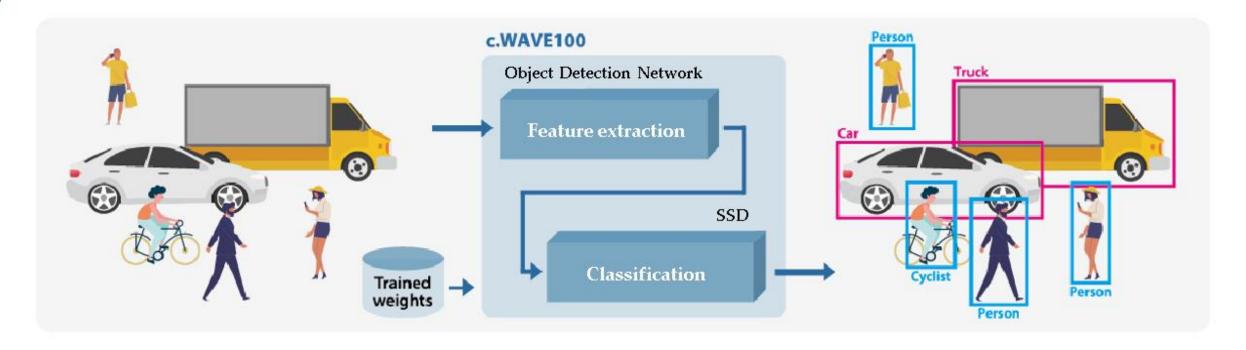
IP LINE-UP: CV (Object Detection)

Based on neural network **deep learning-based object detection HW IP**; which detects objects by **up to 20 classifiers** from live or recorded data.

<Image or Video>

Sensing Device

Inferencing Device



<Detection>

IP LINE-UP: CV (Object Detection)

Fully Hardwired Object Detection IP, c.WAVE100

- up to 20 classifier
- 2K inputs, 30 FPS
- Application-Specific Neural Networks
- Quantization
- 8-bit activation, 8-bit bias with dynamic fixed point
- Per layer
- Log-quantized weights

Network Dedicated Hardware IP

- 1,168 MACs in FLX (Full Layer Accelerators)
- Optimized Area
- <u>Multiply-less MAC</u> operation, save 30% logic gates (compared to the typical MAC)

Fusing Layers

- Reduces bandwidth and less power consumption used
- Saves external memory bandwidth

Thank You

Contact

kaz.hirata@chipsnmedia.com 050-3598-3998